3.505 \(\int (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \, dx\)

Optimal. Leaf size=222 \[ \frac{a \left (a^2+4 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}}-\frac{\left (a^2-2 b^2\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{a^2 \tan (c+d x) \sqrt{a+b \cos (c+d x)}}{d}+\frac{5 a^2 b \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}} \]

[Out]

-(((a^2 - 2*b^2)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[(a + b*Cos[c + d*x])/
(a + b)])) + (a*(a^2 + 4*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqr
t[a + b*Cos[c + d*x]]) + (5*a^2*b*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)]
)/(d*Sqrt[a + b*Cos[c + d*x]]) + (a^2*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.592406, antiderivative size = 222, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.391, Rules used = {2792, 3059, 2655, 2653, 3002, 2663, 2661, 2807, 2805} \[ \frac{a \left (a^2+4 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}}-\frac{\left (a^2-2 b^2\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{a^2 \tan (c+d x) \sqrt{a+b \cos (c+d x)}}{d}+\frac{5 a^2 b \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^2,x]

[Out]

-(((a^2 - 2*b^2)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[(a + b*Cos[c + d*x])/
(a + b)])) + (a*(a^2 + 4*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqr
t[a + b*Cos[c + d*x]]) + (5*a^2*b*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)]
)/(d*Sqrt[a + b*Cos[c + d*x]]) + (a^2*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/d

Rule 2792

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[((b^2*c^2 - 2*a*b*c*d + a^2*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(
d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e +
 f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 + c*
d*(a^2 + b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - d^2) - m*(b*c - a*d)^2 + d*
n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \, dx &=\frac{a^2 \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{d}+\int \frac{\left (\frac{5 a^2 b}{2}+3 a b^2 \cos (c+d x)-\frac{1}{2} b \left (a^2-2 b^2\right ) \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx\\ &=\frac{a^2 \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{d}-\frac{\int \frac{\left (-\frac{5}{2} a^2 b^2-\frac{1}{2} a b \left (a^2+4 b^2\right ) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{b}+\frac{1}{2} \left (-a^2+2 b^2\right ) \int \sqrt{a+b \cos (c+d x)} \, dx\\ &=\frac{a^2 \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{d}+\frac{1}{2} \left (5 a^2 b\right ) \int \frac{\sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx+\frac{1}{2} \left (a \left (a^2+4 b^2\right )\right ) \int \frac{1}{\sqrt{a+b \cos (c+d x)}} \, dx+\frac{\left (\left (-a^2+2 b^2\right ) \sqrt{a+b \cos (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}} \, dx}{2 \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}\\ &=-\frac{\left (a^2-2 b^2\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{a^2 \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{d}+\frac{\left (5 a^2 b \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt{a+b \cos (c+d x)}}+\frac{\left (a \left (a^2+4 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt{a+b \cos (c+d x)}}\\ &=-\frac{\left (a^2-2 b^2\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{a \left (a^2+4 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}}+\frac{5 a^2 b \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}}+\frac{a^2 \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{d}\\ \end{align*}

Mathematica [C]  time = 2.19818, size = 390, normalized size = 1.76 \[ \frac{\frac{2 b \left (9 a^2+2 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\sqrt{a+b \cos (c+d x)}}+\frac{2 i \left (a^2-2 b^2\right ) \csc (c+d x) \sqrt{-\frac{b (\cos (c+d x)-1)}{a+b}} \sqrt{-\frac{b (\cos (c+d x)+1)}{a-b}} \left (2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )+b \left (2 a F\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )-b \Pi \left (\frac{a+b}{a};i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )\right )\right )}{a b \sqrt{-\frac{1}{a+b}}}+4 a^2 \tan (c+d x) \sqrt{a+b \cos (c+d x)}+\frac{24 a b^2 \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\sqrt{a+b \cos (c+d x)}}}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^2,x]

[Out]

((24*a*b^2*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*x]]
+ (2*b*(9*a^2 + 2*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/Sqrt[a +
b*Cos[c + d*x]] + ((2*I)*(a^2 - 2*b^2)*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[-((b*(1 + Cos[c + d*x]))/
(a - b))]*Csc[c + d*x]*(2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)
/(a - b)] + b*(2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] - b*Ell
ipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a*b*Sqrt[-(a
+ b)^(-1)]) + 4*a^2*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/(4*d)

________________________________________________________________________________________

Maple [B]  time = 3.174, size = 960, normalized size = 4.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^2,x)

[Out]

-((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*a^2*b*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+
(-2*a^3-2*a^2*b)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*
x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3+4*EllipticF(cos(1/2*d*x+1/
2*c),(-2*b/(a-b))^(1/2))*a*b^2-EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3+EllipticE(cos(1/2*d*x+1/2*
c),(-2*b/(a-b))^(1/2))*a^2*b+2*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^2-2*EllipticE(cos(1/2*d*x+
1/2*c),(-2*b/(a-b))^(1/2))*b^3-5*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^2*b)*sin(1/2*d*x+1/2*c)
^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*
c),(-2*b/(a-b))^(1/2))*a^3+4*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^
(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/
2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-
2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+2*(si
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2
*b/(a-b))^(1/2))*a*b^2-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*Elli
pticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^3-5*a^2*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+
1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2)))/(2*cos(1/2*d*x+1/2*c)^2-1)/(-
2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^
(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sec \left (d x + c\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^2,x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^2, x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(5/2)*sec(d*x+c)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sec \left (d x + c\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^2,x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^2, x)